If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2-48=0
We add all the numbers together, and all the variables
x^2-46=0
a = 1; b = 0; c = -46;
Δ = b2-4ac
Δ = 02-4·1·(-46)
Δ = 184
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{184}=\sqrt{4*46}=\sqrt{4}*\sqrt{46}=2\sqrt{46}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{46}}{2*1}=\frac{0-2\sqrt{46}}{2} =-\frac{2\sqrt{46}}{2} =-\sqrt{46} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{46}}{2*1}=\frac{0+2\sqrt{46}}{2} =\frac{2\sqrt{46}}{2} =\sqrt{46} $
| 9y+4=13y-6 | | 2/3=270/x | | 11x+8=12+1 | | 3.2m1.2=4.56 | | 2(x-2)=2x-8 | | 1/8+c=1/5 | | 117=2x+(x+19.5) | | (14x-48)=(3x+11) | | (x-90)/x=20 | | -13=2+5w | | (3y+1)+(8y+3)=180 | | 4z-10=7 | | -8=4w+8 | | 180-(3x+5)=(7x-15) | | (3x+5)=(7x-15)-180 | | 12/x=15/30 | | 8x-3+5x-11=180 | | x-4.95=1.8 | | 7x-9x-2=5x-6 | | 2(x+6)=2(6 | | 15=3/w+3 | | 10+4y=2 | | 5/6x-8=22 | | 5y=3(3+3y) | | -13-9x=-103 | | 2700=(n-2)180° | | –8x–18=–6x–32 | | (2x+3)*(x-2)=0 | | 2n=7n=-9 | | 2(2x+1)/3=6 | | 12x-6x+5=4x | | 1/9=27^2x+1 |